Power Magnetics

Transformers

Model
Industry Style
Inductance Range
Turns Ratio
Operating Frequency
DC Resistance Range
Core Type
Operating Case Temp. Range
Packaging Options

HM31	HM32	HM33	HM41	HM80
Current Sense	Current Sense	Current Sense	Gate Drive	ISDN Isolation
1.3mH to 195mH	0.2mH to 85mH	180μH to 980μH	138μH to 860μH	2.7mH to 27mH
1:25 to 1:300	1:10 to 1:200	1:30 to 1:70	1:0.67 to 1:2	1:0.6 to 1:2.5
20KHz plus	20KHz plus	250KHz plus	20KHz to 300KHz	Supports ISDN 192kbps
0.7w to 11.0w	0.2w to 4.5w	1.0w to 4.75w	0.072w to 0.156w	0.9w to 15w
Toroid	Toroid	EE	Toroid	Varies
-25°C to +105°C	-25°C to +105°C	-25°C to +105°C	-25°C to +85°C	0°C to +85°C
Bulk	Bulk	Tape & Reel	Bulk	Tape & Reel/Bulk

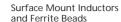
Specifications subject to change without notice.

We are capable of any core type.

Custom Capability/Application Summary

	A. Pow	er	.,							B. Data/	Telcom
		ne Xfmr	Indu		EMI Fil		ite Drive	Current	Sense	LAN	Telecom
	Power	Distrib.	Power	DC-DC	Diff Cor	n. MdXfm	nr (Mosfet)	Ind.	Xfmr	Xfmr	Xfmr
Application Related											
Line Input (70-400V)	•										
Operating Frequency (20–300KHz)	•	•					•	•	•		
Digital Application										•	•
Internal Safety Standards	•		•				•	•	•	•	•
Core: Material & Configuration											
Ferrite: EE	•	•	•				•				
ETD	•	•									
EC	•	•									
Buckle						•					
PQ	•	•									
POT		•								•	•
RM		•								•	
UU							•	•			
Slug			•		•						
Drum			•	•	•	•					
Toroid*		•				•	•	•	•	•	•
Powder Iron: Toroid*			•	•	•						
Package											
SMD		•	•	•	•		•		•	•	•
Through-Hole	•	•	•	•	•	•	•	•	•	•	•
Catalog Equivalent (HM, HS, HT)	Custom	11, 12	2, 13, 15, 7	6, 77, 78	18	19, 28	41	41	32	91, 92, 93	80, 81, 82, 83

 $^{^{\}star}$ Also available in molypermalloy powder iron and tape wound amorphous metal materials.


If your circuit performance dictates specific parameters not listed, please contact BI Technologies engineering. We would need the following to assist you in your design:

- Operating frequency
- Turns ratio
- Withstanding voltage
- Output power in watts

limits

- Size/shape restrictions or
- Impedances
- Circuit topology
- Duty cycle

Power Magnetics

Model
Industry Style
Inductance Range
Impedance Range
DC Resistance
Current Rating
Voltage Rating
Core Type
Operating Case Temp. Range
Packaging Options

BCL 3225/4532/5650	BML/BMC	BMB/BMB High Current	HM71
1210/1812/2220	0402 to 1206 Inductor	0402 to 1812/0603 to 1812 Chip Beads	Surface Mount Inductor
0.1μH to 10000μH	1.5mH to 33µH		1.0μH to 1,000μH
		7w to 2,200w /50w to 600w	0.01w to 13.8w
0.03w to 150mA	0.10w to 2.75w	0.05w to 1.0w /0.01w to 0.3w	0.1A to 20A
25mA to 1800mA	1mA to 300mA	50mA to 600mA	0.5A to 6A
Drum	Monolithic	Monolithic	Drum
-40°C to +100°C	-40°C to +125°C	-25°C to +85°C	-40°C to +85°C
Tape & Reel	Tape & Reel	Tape & Reel	Tape & Reel

Through-Hole Inductors

Model
Industry Style
Inductance Range
DC Resistance
Voltage Rating
Core Type
Operating Case Temp. Range
Packaging Options

HM11	HM15	HM53	HM55	HM56
Rod Core Inductor	Encapsulated Inductor	Output Inductor	Power Inductor	High current cube Indicator
0.21μH to 28μH	150μH to 1,000μH	1.4μH to 1000μH	0.4μH to 6.0μH	0.22μH to 1.30μH
0.9mw to 43mw	0.5w to 1.7w	2.6mw to 680mw		0.60mw to 2.20mw
5.5A to 31A	0.5A to 1.7A	1.9A to 29.5A	9A to 40A	25A to 80A
Ferrite Rod	Toroid	Toroid	Shielded Drum	Composite Ferrite
-25°C to +105°C	-40°C to +125°C	-40°C to +155°C		-40°C to +125°C
Bulk	Tray	Tray	Tray	Tray

Specifications subject to change without notice. For Custom Applications Please Contact Us.

Selecting Minimum Inductance For A Buck Or Boost Converter:

Example #1, Step-Down (Buck) Converter

- 1. Determine the minimum on time of the transistor switch. $T_{ON\,(MIN)} = \frac{V_0 + V_D}{F\,x\,E_{IN\,(MAX.)}} = \frac{5 + 0.5}{50000\,x\,26} = 4.23\mu s$
- 2. Assume the peak to peak ripple current, ΔI_1 , equal to twice the min. value of DC output current.
- 3. Calculate the minimum inductance. L $_{MIN.} = \frac{\left[E_{IN\,(MAX.)} V_{O} V_{D}\right]T_{ON\,(MIN.)}}{\Delta I_{I}} = \frac{(26 5 0.5)\,(4.23\,x\,10^{-6})}{2\,x\,0.5} = 86.7 \mu H$
- 4. Refer to our catalog and select the smallest part meeting min. I_{DC} and inductance requirement.

HM66	HM68	HM72A	HM77	HM78
Surface Mount Inductor	Button Inductor	Surface Mount Inductor	Surface Mount Inductor	Surface Mount Inductor
1μH to 330μH	2.2μH to 47μH	1μH to 1,070μH	10μH to 1,000μH	
0.008w to 1.54w	0.081w to 2.34w	0.55mw to 332mw	4.56mw to 1,480mw	5.2mw to 5.2w
0.22A to 10.0A	0.48A to 1.9A	1.8A to 35A	0.71A to 13.3A	0.2A to 12A
Shielded Drum	Drum	Composite	Shielded Drum Core	
-40°C to +85°C	-40°C to +100°C	40°C to +155°C	-40°C to +105°C	-40°C to +85°C
Tape & Reel	Tape & Reel	Tape & Reel	Tape & Reel	Tape & Reel/Tube

HM73
Surface Mount Inductor
.01μH to 10μH
0.5M to 23.1mw
5.6A to 40A
ER
-40°C to 135°C
Tape & Reel

HM67	HM19	HM28
Surface Mount C.M.	Toroid Style	Buckle Style
5µH to 4.7MH	1mH to 16mH	0.45mH to 120mH
5.8mw to 403mw	0.02w to 0.24w	0.08w to 2.7w
0.2A to 1.0A	1.8A to 7.5A	0.5A to 4A
300V	250V	250V
Toroid	Toroid	Buckle
-40°C to +125°C	-25°C to +105°C	-25°C to +105°C
Tape & Reel	Tray	Tray/Tube

Example #2, Step-Up (Boost) Converter

Input Voltage (V_{IN}): +12V to +15V Output Voltage (V_O): +24V

Switching Frequency (F): 50KHz

Maximum DC Output Current (I_{DC MAX}): 1.5A

Voltage Drop Across Switcher (V_{SW}) : 0.5V Voltage Drop Across Diode (V_D) : 0.5V

- 1. Assume a maximum ripple current of 12.5% of inductor current. $I_{L \text{ (AVE)}}$
- 2. Determine the minimum on time of the switcher. $T_{ON \, (MIN.)} = \frac{[V_O E_{IN \, (MAX.)} + V_D]}{F \, V_O} = \frac{24 15 + 0.5}{50000 \, x \, 24} = 7.92 \mu s$
- 3. Determine the average current through inductor. $I_{L \text{ (AVE)}} = \frac{1.05 (V_0 + V_D) I_{DC}}{E_{IN}} = \frac{1.05 (24 + 0.5) 1.5}{15} \approx 2.57 A$
- 4. Determine peak to peak ripple current. $\Delta I_L = 2$ (P/100) $I_{L \text{(AVE)}} = 2$ x 12.5% x 2.57 = 0.643
- 5. Calculate the minimum inductance. L $_{MIN.} = \frac{[E_{IN~(MAX.)} V_{SW}] T_{ON~(MIN.)}}{\Delta I_L} = \frac{(15-0.5) (7.92 \text{ x } 10^{-6})}{0.643} = 179 \mu H$
- 6. Refer to our catalog and select the smallest part meeting Min. L_{DC} and inductance requirement.

Signal Magnetics

LAN/WAN/ISDN

Model	HS91	HS92	HS93
Industry Style	Single Port 100/1000MB	10 Base-T Ethernet AUI Transformer	T1/CEPT/ISDN Transformer
Turns Ratio (Chip to Media Side)	1:1, ÷ 2:1	1:1, 1ct:2ct	1:1:1, 1:2ct, 1ct:2ct, 1:2
Operating Temp. Range	0°C to +70°C	0°C to +70°C	0°C to +70°C
Insertion Loss	-1.0 Typ. 1 to 100MHz		
Rise Time	2.5ns, Typ.		
Return Loss	-11 to -18dB, 0.1 to 100MHz		
Common Mode Rejection	-35 to -45dB, 0.1 to 100MHz		
Cross Talk	-38 to -40dB, 0.1 to 100MHz		
Insulation Voltage, Minimum	1,500Vrms	2,000Vrms	2,000Vrms
Inductance	350µH @ 100KHz	90μH to 140μH @ 100KHz	1.2mH to 22mH @ 100KHz
Leakage Inductance		0.1μH to 0.2μH @ 100KHz	0.5μH to 11μH @ 100KHz
Interwinding Capacitance		10pF to 12pF @ 100KHz	35pF to 100pF @ 100KHz
DC Resistance		0.3w to 0.6w	0.7w to 2.4w
Mounting Style	Surface Mount	Surface Mount	Surface Mount/Through-Hole

DSL Coupling Transformer

Model	HT81	HT82	HT83
Industry Style	HDSL Transformer	VDSL Transformer	Common Mode Choke*
Turns Ratio (Chip to Media Side)	1ct, 2ct:1.8ct, 2st	1:1, 1:1:1	
Insertion Loss	1.0dB Max. @ 40KHz	0.5dB to 0.8dB @ .2MHz to 30MHz	
Return Loss	16.5dB to 20dB @ Mid. Band	10dB to 22dB @ .2MHz to 30MHZ	
Longitudinal Balance	50dB to 55dB @ 5 to 320KHz	30dB to 40dB @ .2MHz to 3MHz	
THD	-70dB to -75dB	-70dB	
Inductance @ 10KHz	2mH to 3mH	175μH to 250μH	24µH to 4mH
Cross Talk	-38dB to -40dB, 0.1 to 100MHz	<u>'</u>	
Common Mode Attenuation			20dB to 45dB
Parallel Impedance @ 10KHz			7.5kW
Mounting Style	Through-Hole	Surface Mount/Through-Hole	Surface Mount/Through-Hole

Specifications subject to change without notice.

^{*} For applications up to 25.92 mbs.